2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какой ток в розетке переменный или постоянный — AC and DC

Какой ток в розетке переменный или постоянный — AC and DC

Всем известно, что в розетках есть электрическое напряжение, но мало кто задумывается о том, какое это напряжение — переменное или постоянное.

Почти вся производимая электроэнергия является переменной, а постоянная, вырабатываемая генераторами постоянного тока и солнечными электростанциями перед поступлением в сеть преобразовывается в переменный ток, поэтому более, чем в 98% розеток переменный ток. Переменным называют такое напряжение, которое периодически изменяет свою полярность и величину. Единицей частоты этих изменений является 1Гц (герц).

Генераторы переменного тока проще по конструкции и дешевле, а величина переменного напряжения меняется при помощи трансформаторов. Чем выше напряжение, тем меньше потери и необходимое сечение проводов, а перед поступлением в розетки оно уменьшается до 220В (в США 230В). БОльшая часть бытовых электроприборов предназначены для питания переменным напряжением, а те из них, которые нуждаются в постоянном токе, подключаются через блоки питания.

В этой статье рассказывается о том, какой в розетке ток переменный или постоянный, чем они отличаются друг от друга и почему именно переменное напряжение используется дома и на предприятиях.

§ 30. Электрический ток и его использование

Электрическая энергия, которую использует человек, не существует в природе в готовом для потребления виде. Её нельзя откопать, как полезное ископаемое — нефть или уголь. Поэтому необходимую для производственных и бытовых нужд электрическую энергию человек научился получать из других видов энергии: механической, тепловой, световой, энергии химического процесса.

Устройство, преобразующее какую-либо энергию в электрическую, называется источником (рис. 52).

Рис. 52. Источники электрической энергии: а — гальванический элемент, б — батарея гальванических элементов, в — аккумулятор, г — электрогенератор

Основная часть используемой человеком электроэнергии вырабатывается из механической энергии специальными электромеханическими машинами — электрогенераторами.

В электрогенераторе механическая энергия турбины — вращающегося колеса специальной конструкции — преобразуется в электрическую энергию. Турбина вращается силой падающей воды — на гидростанциях, паром — на тепловых электростанциях, силой ветра — на ветряных электростанциях, двигателем внутреннего сгорания — на борту самолёта.

Источником электрической энергии на космических станциях являются фотоэлементы, преобразующие солнечную энергию в электрическую.

Переносными источниками электрической энергии являются гальванические элементы, аккумуляторы, а также батареи из них. В них электрическая энергия получается за счёт химического процесса взаимодействия разнородных металлов с особым веществом — электролитом. Существуют ещё малогабаритные механические генераторы, работающие от мускульной силы рук или ног человека, например генератор для велосипедной фары.

Электроэнергия передаётся при помощи потока мельчайших заряженных частиц — электрического тока. В природе обнаружено два вида зарядов, условно названных положительными и отрицательными. Вокруг каждого из зарядов существует электрическое поле, за счёт которого одноимённые заряды отталкиваются друг от друга, а разноимённые притягиваются друг к другу.

Направленное движение электрических зарядов называется электрическим током.

Вещества, пропускающие электрический ток, называют проводниками. Вещества, не пропускающие электрический ток, называют диэлектриками или изоляторами.

За направление электрического тока условно принято движение положительных зарядов, которые перемещаются от положительного полюса источника тока к отрицательному по проводнику, подключённому к полюсам.

Количество зарядов (q), протекающих через поперечное сечение проводника за единицу времени, называется силой тока (I):

I = q/t.

Сила тока измеряется в амперах (А) — в честь французского учёного Андре Ампера.

В металлических проводниках ток образуется движением электронов, имеющих отрицательный заряд.

В газовой среде и жидкостях из-за более разреженной структуры вещества (в отличие от жёсткой кристаллической решётки металла) электрический ток образуется как за счёт электронов, так и за счёт ионов — положительных и отрицательных частиц атомов или молекул веществ.

Ток называется постоянным, если он не меняется с течением времени ни по величине, ни по направлению. Ток, у которого сила и направление периодически изменяются, называется переменным.

Практическое использование электрической энергии основано на некоторых физических явлениях, которыми сопровождается прохождение тока через проводник. Тепловое действие электрического тока широко используют в работе осветительных и электронагревательных приборов. Магнитное действие используют в измерительных приборах, электромагнитных реле, электромагнитных телефонах и громкоговорителях, электрических генераторах и двигателях.

Прохождение постоянного электрического тока через жидкие среды сопровождается химическими реакциями. Это свойство широко используется в аккумуляторах, применяется в электрометаллургии, при электрохимической обработке материалов и в опреснителях морской воды.

Электрический ток в газовой среде вызывает свечение газа. На основе этого явления работают дуговые источники света (например, в прожекторах). Электрический разряд в воздухе сопровождается не только свечением, но и повышением температуры электродов, что используют для сварки и резки металлов.

Устройства, в которых происходит преобразование электрической энергии в другие виды энергии — свет, тепло, механическую и химическую энергию, — называются приёмниками или потребителями электрической энергии, а в электротехнике — нагрузкой (рис. 53).

Рис. 53. Потребители электрической энергии

Чтобы электрическое устройство (нагрузка) работало, его необходимо соединить с полюсами источника тока. На практике источник с нагрузкой часто соединяют с помощью дополнительных проводников, в быту и электротехнике называемых проводами.

То, о чем мы говорили сейчас: 1) источник электрической энергии, 2) нагрузка и 3) соединительные провода — всё это вместе называется электрической цепью.

Новые слова и понятия

Источник питания, электрические провода, потребитель, нагрузка, электрическая цепь.

Проверяем свои знания

  1. Что такое электрический ток и что такое сила тока, в каких единицах она измеряется?
  2. Назовите носители тока в металлах, жидкостях и газах.
  3. Что называют электрической цепью?
  4. Перечислите основные элементы электрической цепи и функции, которые они выполняют при прохождении тока.
  5. Узнайте, что является источником электрического тока в мотоцикле, автомобиле.
  6. Какие электропотребители есть у вас дома?
  7. За счёт чего можно экономить электроэнергию в быту и на производстве?

Это интересно

Ещё в Древней Греции было установлено, что янтарь после натирания шерстяной тканью притягивает лёгкие предметы. По-гречески слово «янтарь» звучит как «электрон». От этого слова и произошёл термин «электричество».

Читать еще:  Ошибка WiFi — Сохранено, Защита WPA2

Повреждения, причиняемые организму человека электрическим током

Экспертиза при воздействии электричества выделяет следующие разновидности травматических последствий контакта к источником или проводниками электрического тока:

  • Общая электротравма или электрический удар.
  • Местная электротравма, приводящая к повреждению тканей.
  • Электрические знаки (электрометки).
  • Металлизация кожи.
  • Механические повреждения.

К электрическим ударам относят травмы, включающие повреждения всего организма в целом вследствие резкого изменения привычной жизнедеятельности основных органов и систем человеческого тела. Согласно наблюдаемым патологическим процессам, возникающим в результате воздействия электрического тока, выделяют четыре степени электротравмы:

  • I степень – сопровождается судорожными сокращениями мышц при сохранении сознания.
  • II степень – потеря сознания вместе с судорожными сокращениями мышц.
  • III степень – наблюдается потеря сознания, которая сопровождается нарушением функционирования дыхательной и/или сердечно-сосудистой системы.
  • IV степень – наступает клиническая смерть.

Местные электротравмы представляют собой электрические ожоги, степень которых определяется физическими характеристиками электрического тока и длительностью воздействия.

Электрометками или электрическими знаками называют характерные поражения, в основном являющиеся результатом совокупного механического и химического действия электрического тока. Электрометки наблюдаются как пятна с четко выраженными границами, размером от одного до трех миллиметров, имеющие бледно-желтую или серую окраску. Форма электрических знаков может быть овальной или округлой, при этом кратерообразного характера, с углублением в центре. В отдельных случаях электрометки приобретают форму источника тока, с которым произошел контакт.

Специфической разновидностью электроповреждений является металлизация кожи, возникающая в результате проникновения мельчайших металлических частиц в поверхностные слои кожи. Металлы расплавляются в результате воздействия электрической дуги, а также во время непосредственного плотного прикосновения кожных покровов к металлической токоведущей части. В зависимости от вида и состава металла образуется характерная окраска металлизированной поверхности.

В результате длительного одновременного специфического и механического действия электрического тока возникают механические повреждения. Подобные травмы наблюдаются в виде разрывов кожи, сухожилий, нервной ткани и кровеносных сосудов. Иногда встречаются переломы костей и вывихи суставов.

Следует заметить, что в отдельных случаях электротравма возникает без прямого контакта с источником тока. Такие повреждения могут быть вызваны в результате возникновения вольтовой дуги или при образовании шагового напряжения. Шаговое напряжение – это разность потенциалов, которые возникают на расстоянии, равном промежутку между стопами при выполнении обычного шага. Например, в случае обрыва электролинии и попадании провода на землю, ток распределяется вокруг разрыва по поверхности почвы в радиусе, примерно равном десяти метрам. По мере удалении от места разрыва, ток постепенно сходит на нет. если войти в этот незримый круг, разница электрических потенциалов под правой и левой стопами вызывает повреждение, называемое шаговой электротравмой. Причем, поражение тем тяжелее, чем больше расстояние между стопами, так как разница потенциалов увеличивается пропорционально длине шага.

Мощность электрического тока. Виды и работа. Особенности

Мощность электрического тока — это количество работы, которая выполняется за определенный период. Так как работа представляет параметр изменения энергии, то мощность можно назвать характеристикой скорости передачи либо преобразования электроэнергии. С мощностью электротока человеку приходится сталкиваться и в быту и на производстве, где применяются электрические приборы. Каждый из них потребляет электроток, поэтому при их использовании всегда необходимо учитывать возможности этих приборов, в том числе заложенные в них технические характеристики.

Мощность электрического прибора имеет важнейшее значение, ведь данный показатель используется не только для расчета электрической проводки, автоматов и предохранителей, но и для решения других задач. Чем мощность электрического прибора будет больше, тем за более короткое время он сможет осуществить необходимую работу. Если сравнить между собой электрическую плитку, тепловую электропушку или электрокамин, то у них у всех разные показатели мощности. То есть они будут обогревать площадь помещения за совершенно разное время.

Виды
Мощность электрического тока также может быть вычислена по формуле:

P=A/t, которая характеризует интенсивность передачи электроэнергии, то есть работа, совершаемая током по перемещению зарядов за определенный период времени.

Здесь A – это работа, t — время, за которое работа была выполнена.

Мощность может быть двух видов: реактивной и активной.

При активной мощности осуществляется преобразование мощности электротока в энергию движения, тепла, света и иные виды. Данный перевод тока в указанные виды невозможно выполнить обратно. Активная мощность измеряется в ваттах. Один ватт равняется один Вольт умноженный на один ампер. Для бытового и производственного применения задействуются показатели на порядок больших значений: это мегаватты в киловатты.

Реактивная мощность электрического тока представляет электронагрузку, создаваемую в приборах посредством емкостной и (или) индуктивной нагрузкой.

В случае переменного тока, указанный параметр характеризуется формулой:

Q=UIsinφ

Здесь синус φ выражается сдвигом фаз, который образуется между снижением напряжения и действующим электротоком. Значение угла может находиться в пределах от 0 до 90 градусов или от 0 до -90 градусов.

Параметр Q характеризует реактивную мощность, ее можно измерить в вольт-амперах. При помощи указанной формулы можно быстро определить мощность электротока.

Реактивные и активные показатели мощности можно продемонстрировать на обычном примере: Прибор может одновременно иметь нагревающие элементы: электрический двигатель и ТЭН. На изготовление ТЭНов применяется материал, который обладает большим сопротивлением, вследствие чего при прохождении по нему тока, электроэнергия становится тепловой. В данном случае довольно-таки точно характеризуется активная мощность электротока. Если брать за основу электродвигатель то внутри него располагается обмотка из меди, которая обладает индуктивностью, что, как правило, также вызывает эффект самоиндукции.

Эффект самоиндукции обеспечивает некоторое возвращение электроэнергии непосредственно в электросеть. Данную энергию можно охарактеризовать определенным смещением в показателях по электротоку и напряжению, что приводит к нежелательным последствиям на сеть в качестве определенных перегрузок. Подобными показателями выделяются и конденсаторы вследствие собственной емкости в момент, когда весь собранный заряд направляется обратно.

В данном случае происходит смещение тока и напряжения, но в обратном перемещении. Энергия индуктивности и емкости, которые смещаются по фазе относительно параметров электрической сети и называется реактивной электромощностью. Именно обратный эффект к сдвигу фазы позволяет осуществить компенсирование мощности реактивного параметра. В результате повышается качество и эффективность электрического снабжения.

Полная мощность электрического тока характеризуется величиной, которая соответствует произведению тока и напряжения и связана с активной и реактивной мощностью следующим уравнением:

S=˅P2+Q2

Где S – полная мощность, вычисляемая корнем из произведений квадратов активной и реактивной мощностей.

Для простоты восприятия активная мощность есть там, где присутствует активная нагрузка, к примеру, спиральные нагреватели, сопротивление проводов и тому подобное. Реактивная мощность наблюдается там, где имеется реактивная нагрузка, то есть элементы индуктивности и емкости, к примеру, конденсаторы.

Читать еще:  Инструкция как убрать пароль на Windows 8 и Windows 8.1.
Принцип действия

Когда заряд движется по проводнику, то электромагнитное поле выполняет над ним работу. Данная величина характеризуется напряжением. Заряды направляются в сторону снижения потенциалов, однако для поддержания указанного процесса необходим некоторый источник энергии. Напряжение по своему показателю соответствует работе поля, которое необходимо для перемещения единичного заряда Кулона на рассматриваемом участке. При перемещении заряда возникают явления, при которых электроэнергия может приходить в другие виды энергии.

Для доставки электроэнергии от электростанции до конечного потребителя необходимо выполнить определенную работу. Для создания требуемого напряжения, то есть возможности выполнения работы электротока по перемещению заряда, применяется трансформатор. Данное устройство производит увеличение показателя напряжения. Полученный ток под высоким напряжением, иногда достигающим 10 тысяч Вольт, движется по высоковольтным проводам. При достижении места назначения, он попадает на трансформатор, который уменьшает напряжение до промышленных или бытовых показателей. Далее ток направляется на производства, в квартиры и дома.

Применение
Одним из основных элементов электроцепи является приемник электроэнергии. Именно электрические приемники служат для преобразования электроэнергии в другие виды энергии:
  • Механическую: электрические двигатели и магниты.
  • Тепловую: агрегаты для сварки, электрические плитки, печки для выпечки хлеба, керамические печи и тому подобное;
  • Световую: лампочки накаливания, светодиодные, неоновые лампы и так далее.
  • Химическую: гальванические ванны и тому подобное.

Указанные преобразования возможны лишь в том случае, если ток проходит через сопротивление необходимого уровня. То есть при перемещении зарядов по проводнику наблюдается потеря энергии, что как раз и вызвано наличием сопротивления. Если рассматривать это дело на атомарном уровне, то электроны сталкиваются с ионами кристаллической решетки. Это приводит к возбуждению и теп­ловому движению, вследствие чего происходит потеря энергии.

Особенности

Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу, то есть за определенное время. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.

Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.

Поэтому так важно знать мощности электрических приборов, чтобы правильно подобрать сечение и материал проводов или не допускать одновременного включения в сеть приборов, имеющих большую мощность.

В качества примера можно привести следующие показатели:
  • Сетевой роутер требует 10-20 Вт.
  • Бытовой сварочный аппарат имеет мощность 1500-5500 Вт.
  • Стиральная машина потребляет мощность 350-2000 Вт.
  • Электрическая плитка имеет мощность 1000-2000 Вт.
  • Холодильник бытовой потребляет мощность 15-700 Вт.
  • Монитор жидкокристаллический имеет мощность 2-40 Вт.
  • Монитор с электролучевой трубкой потребляет 15-200 Вт.
  • Системный блок ПК потребляет 100-1200 Вт.
  • Электрический пылесос имеет мощность 100-3000 Вт.
  • Лампа накаливания бытовая – 25-200 Вт.
  • Электрический утюг – 300-2000 Вт.
Интересные особенности

Мощность электрического тока раньше благодаря Джеймсу Уатту измерялась в лошадиных силах. Однако в конце девятнадцатого века было решено присвоить мощности название Ватт, чтобы увековечить имя известного ученого и изобретателя. На тот период это случилось впервые, когда единице измерения присвоили имя ученого. Именно с этого времени пошла традиция присвоения имен ученых единицам измерения.

Мощность электрического тока молнии составляет порядка один ТераВатт, при этом происходит ее преобразование в световую и тепловую энергию. Температура внутри молнии при этом составляет 25 тысяч градусов. Молния способна ударять в одно и то же место. А согласно статистике молния попадает в мужчин примерно в 5 раз больше, чем в представителей женского пола.

Направление электрического тока

Традиционно считают, что вектор электрического тока направлен к отрицательному полюсу источника. Но на самом деле электроны движутся к положительному полюсу. Традиция возникла из-за того, что за направление вектора было выбрано движение положительных ионов в электролитах, которые действительно стремятся к негативному полюсу.

Электроны проводимости с отрицательным зарядом в металлах были открыты позже, но физики не стали менять первоначальные убеждения. Так укрепилось утверждение, что ток направлен от плюса к минусу.

Разряды в газе могут быть самостоятельными и несамостоятельными. Ток начинает существовать, когда появляются свободные заряды. Несамостоятельные разряды существуют пока на него действует сила извне, то есть внешний ионизатор. То есть, если внешний ионизатор перестал действовать, то и ток прекращается.

Самостоятельный разряд электрического тока в газах существует даже после прекращения действия внешнего ионизатора. Самостоятельные разряды в физике подразделяются на тихий, тлеющий, дуговой, искровой, коронный.

  • Тихий– самый слабый из самостоятельных разрядов. Сила тока в нем очень мала (не более 1 мА). Он не сопровождается звуковыми или световыми явлениями.
  • Тлеющий– если увеличить напряжение в тихом разряде, он переходит на следующий уровень – в тлеющий разряд. В этом случае появляется свечение, которое сопровождается рекомбинацией. Рекомбинация– обратный процесс ионизации, встреча электрона и положительного иона. Применяется в бактерицидных и осветительных лампах.

Рис. 2. Тлеющий разряд

  • Дуговой– сила тока колеблется от 10 А до 100 А. Ионизация при этом равна почти 100%. Этот тип разряда возникает, например, при работе сварочного аппарата.

Рис. 3. Дуговой разряд

  • Искровой– можно считать одним из видов дугового разряда. Во время такого разряда за очень короткое время протекает определенное количество электричества.
  • Коронный разряд – ионизация молекул происходит вблизи электродов с малыми радиусами кривизны. Этот вид заряда происходит тогда, когда напряженность электрического поля резко изменяется.

Предохранительные средства защиты

К предохранительным относятся специальные средства индивидуальной защиты, обеспечивающие безопасность во время проведения электромонтажных работ в особо сложных условиях (на высоте, при световом, тепловом и механическом воздействии электрической дуги). Это предохранительные пояса, «когти», лестницы, защитные щитки, каски и очки, рукавицы из трудновоспламеняемых материалов, спецодежда, спецобувь, противогазы и т.д.

Пример. Когти монтерские КМ №2 выполнены из упрочненной стали и предназначенные для перемещения по деревянным опорам ЛЭП, а также для обслуживания электроустановок.

Существуют следующие виды источников электрического тока:

  • механические;
  • тепловые;
  • световые;
  • химические.
Читать еще:  Встроенные в Windows утилиты

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному. Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока. Металлические термопары используют лишь для измерения температуры.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор. В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой. Преобразователем тепла в электричество служит биметаллическая термопара.

Световые источники

С развитием физики полупроводников в конце ХХ века появились новые источники тока – солнечные батареи, в которых энергия света преобразуется в электрическую энергию. В них используется свойство полупроводников выдавать напряжение при воздействии на них светового потока. Особенно сильно этот эффект наблюдается у кремниевых полупроводников. Но всё-таки КПД таких элементов не превышает 15%. Солнечные батареи стали незаменимы в космической отрасли, начали применяться и в быту. Цена таких источников питания постоянно снижается, но остаётся достаточно высокой: около 100 рублей за 1 ватт мощности.

Химические источники

Все химические источники можно разбить на 3 группы:

  1. Гальванические
  2. Аккумуляторы
  3. Тепловые

Гальванические элементы работают на основе взаимодействия двух разных металлов, помещённых в электролит. В качестве пар металлов и электролита могут быть разные химические элементы и их соединения. От этого зависит вид и характеристики элемента.

ВАЖНО! Гальванические элементы используются только разово, т.е. после разряда их невозможно восстановить.

Существует 3 вида гальванических источников (или батареек):

  1. Солевые;
  2. Щелочные;
  3. Литиевые.

Солевые, или иначе «сухие», батарейки используют пастообразный электролит из соли какого-либо металла, помещённый в цинковый стаканчик. Катодом служит графито-марганцевый стержень, расположенный в центре стаканчика. Дешёвые материалы и лёгкость изготовления таких батареек сделали их самыми дешёвыми из всех. Но по характеристикам они значительно уступают щелочным и литиевым.

В щелочных батарейках в качестве электролита используется пастообразный раствор щёлочи — гидрооксида калия. Цинковый анод заменён на порошкообразный цинк, что позволило увеличить отдаваемый элементом ток и время работы. Эти элементы служат в 1,5 раза дольше солевых.

В литиевом элементе анод сделан из лития — щелочного металла, что значительно увеличило продолжительность работы. Но одновременно увеличилась цена из-за относительной дороговизны лития. Кроме того, литиевая батарейка может иметь различное напряжение в зависимости от материала катода. Выпускают батарейки с напряжением от 1,5 В до 3,7 В.

Аккумуляторы — источники электрического тока, которые можно подвергать многим циклам заряда-разряда. Основными видами аккумуляторов являются:

  1. Свинцово-кислотные;
  2. Литий-ионные;
  3. Никель-кадмиевые.

Свинцово-кислотные аккумуляторы состоят из свинцовых пластин, погружённых в раствор серной кислоты. При замыкании внешней электрической цепи происходит химическая реакция, в результате которой свинец преобразуется в сульфат свинца на катоде и аноде, а также образуется вода. В процессе зарядки сульфат свинца на аноде восстанавливается до свинца, а на катоде до диоксида свинца.

Литий-ионный аккумулятор получил своё название из-за того, что в качестве носителя электричества в электролите служат ионы лития. Ионы возникают на катоде, который изготовлен из соли лития на подложке из алюминиевой фольги. Анод изготавливается из различных материалов: графита, оксидов кобальта и других соединений на подложке из медной фольги.

Напряжение в зависимости от применяемых компонентов может быть от 3 В до 4,2 В. Благодаря низкому саморазряду и большому количеству циклов заряда-разряда литий-ионные аккумуляторы приобрели большую популярность в бытовой технике.

ВАЖНО! Литий-ионные аккумуляторы очень чувствительны к перезарядке. Поэтому для их зарядки нужно использовать зарядные устройства, предназначенные только для них, которые имеют встроенные специальные схемы, предотвращающие перезаряд. Иначе может произойти разрушение аккумулятора и его возгорание.

В никель-кадмиевых аккумуляторах катод сделан из соли никеля на стальной сетке, анод из соли кадмия на стальной сетке, а электролит — смесь гидроксида лития и гидроксида калия. Номинальное напряжение такого аккумулятора — 1,37 В. Он выдерживает от 100 до 900 циклов зарядки-разрядки.

Тепловые химические элементы служат как источники резервного питания. Они дают отличные характеристики по удельной плотности тока, но имеют короткий срок службы (до 1 часа). Применяются в основном в ракетной технике, где нужны надёжность и кратковременная работа.

Что делать при поражении током

Не менее важным, чем способы защиты будет алгоритм действий при уже случившемся поражении электрическим током. А именно такие меры:

  1. Необходимо полностью отключить электропитание. В случае если это невозможно сделать своими силами — требуется вызвать аварийную службу.
  2. Обеспечение полной безопасности, при необходимости нужно перенести пострадавшего в другое место.
  3. Нужно оценить состояние пострадавшего по алгоритму ABCD, BLS, далее будут разобраны эти алгоритмы.
  4. Сердечно-легочная реанимация, если такие меры необходимы.
  5. Установка венозного катетера, инфузионная терапия.
  6. Меры по транспортировке пострадавшего в больницу.

Крайне важно помнить, что при косвенном или при прямом прикосновении пораженного человека электричество заденет и того, кто прикоснулся. Поэтому ни в коем случае нельзя трогать пострадавшего до того момента, пока не прекратится подача электричества непосредственно на объект, которого пострадавший касается.

Теперь стоит разобрать алгоритмы ABCD и BLS:

  • ABCD – процесс при котором проводится проверка основных жизненных показателей пациента: состояние дыхательных путей, дыхание, кровообращение, снижение уровня сознания;
  • BLS – оценка состояния дыхания пострадавшего, мероприятия по сердечно-легочной реанимации.

Итак, подводя итоги можно сделать вывод, что в большинстве случаев человек сам подвергает себя опасности незнанием мер, средств, способов защиты от электричества. А главное правило, которое необходимо соблюдать — не пренебрегать правилами безопасности, информацией, способной уберечь от несчастного случая, соблюдать меры предосторожности.

Кстати на сайте «Сам электрик» вы можете пройти тест на знание правил электробезопасности на 2, 3, 4 и 5 группы допуска. (каждая цифра — это ссылка на отдельный тест).

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector